How to Build an Artificial Womb

[dropcap]Artificial wombs[/dropcap] are a staple of science fiction, but could we really build one? As time passes, we’re inching closer and closer to the day when it will finally become possible to grow a baby entirely outside the human body. Here’s what we’ll need to do to pull it off.

More than just an incubator

A fully functional artificial uterus will be substantially more complex than a modern incubator, a clunky (and somewhat obtrusive) device that provides a preemie with oxygen, protection from cold, hydration and nutrition (via intravenous catheter or NG tube), and adequate levels of humidity.

Even in the best of cases, the current state-of-the-art doesn’t allow for viability outside of the womb until mid to late second trimester. Prior to that, a mother’s womb is the only option. Quite obviously, future incubators, or a full-blown artificial uterus, will push the limits of viability further and further until the entire gestational cycle can happen external to the body.

We’re still several decades away, but the two primary areas that need to be developed include biotechnology (for things like personalized genomics and tissue engineering) and nanotechnology (to facilitate micro-scale interactions and growth through artificial means). Smart computer systems and monitoring devices should also be developed to track the progress of the fetus’s growth, while automatically adjusting for changing conditions.

In terms of specifics, these are the broad components that will be required:

Artificial endometrium

The inner lining of the artificial uterus should resemble the real thing as much as possible.

Actually, for the first generation of artificial wombs, it would be prudent to mimic every gestational process as much as possible (we are producing a biological organism, after all). Later versions can then build upon what nature designed, and be optimized accordingly.

To that end, an artificial endometrium should not be made from glass or metal, but instead consist of a glandular layer made of real tissue. A blastocyst conceived via in vitro fertilization could then be implanted about 3 to 4 mm into the endometrium where it would take root and proceed to grow.

Work in this area has already been conducted by Cornell University’s Hung-Ching Liu. Many years ago, she prepared a co-culture system that combined epithelial and stromal cells (for ethical reasons these experiments weren’t extended beyond six days). Hung-Ching’s work is considered the first real attempt towards the development of an a-womb.

In addition to providing a physical starting point and enclosed space for the fetus, the artificial endometrium could also spawn and host a real placenta (e.g. by coaxing the growth of pluripotent stem cells), though it doesn’t necessarily have to come about this way.
Artificial placenta

And indeed, the growing fetus will also need a placenta, the organ which connects it to the uterine wall (via umbilicus) allowing for the delivery of nutrients, the elimination of waste, and gas exchange through the mother’s blood supply. Depending on the technologies available, the a-placenta could either develop “naturally” on the endometrial wall, or it could take the form an external device (or devices) that performs the same function. For example, a dialysis machine could actually help with waste disposal.

George Dvorsky - IO9

Matched Articles:

What’s Popular Now: