How to Measure the Power of Alien Civilizations Using the Kardashev Scale

[dropcap]W[/dropcap]e have yet to make contact with an extraterrestrial civilization. If they’re out there — and surely they must be — we haven’t the foggiest idea what they might be like. Or do we?

Given what we know about the universe and our own civilization, we should be able to make some educated guesses. And in fact, several decades ago, a Russian astrophysicist came up with a classification system to describe hypothetical aliens. Here’s how the Kardashev Scale works.

The scale was devised by Nikolai S. Kardashev, a Soviet-era cosmologist who is still active today. Though he’s 81, Kardashev works as the deputy director of the Russian Space Research Institute at Moscow‘s Russian Academy of Sciences. During the 1950s, while both his parents were in Stalin’s slave labor camps, he became an astronomy student at Moscow University’s Mechanics and Mathematics department. His primary interest was in astrophysics and the theoretic potential for wormholes, but he also shared a fascination with the search for extraterrestrial intelligence (ETIs).

It was around this time that Frank Drake launched Project Ozma — a pioneering attempt to locate ETI‘s by scanning the sky for radio emissions. Accordingly, Kardashev began to wonder if a good number of alien civilizations might be millions of years ahead of us, and if so, what their radio signatures might be like. Just how “loud,” he surmised, could alien transmissions truly get?

This prompted Kardashev to write his seminal 1963 paper, “Transmission of Information by Extraterrestrial Civilizations.” In it, he proposed a simple numbering system — from one to three — that could be used to classify hypothetical alien civilizations according to the amount of energy at their disposal. More specifically, he wanted to quantify the power available to them for their radio transmissions.

Today, Kardashev’s scale has been expanded and re-interpreted to include more than just the capacity for communications technology. Astrobiologists and cosmologists now use the scale to simply describe the amount of energy available to an ETI for any kind of purpose. As a result, the scale is often used to speculate about the kinds of technologies and existential modalities that characterize advanced civilizations.

Here’s how it works.

  • Kardashev Type I

In his paper, Kardashev wrote that a Type I civilization would be at a “technological level close to the level presently attained on the Earth, with energy consumption ~4 x 1019 erg/sec.” That’s about 4 x 1012 Watts.

Kardashev’s initial intention was to describe a civilization not too far removed from our own (again, for the purpose of rating its communicative capacities) — but one that has yet to exploit all of the solar system’s resources (i.e. a pre-stellar ETI).

A Type I is typically associated with a hypothetical civilization that has harnessed all the power available to it on its home planet. As physicist Michio Kaku has said, it’s a planetary scale civilization that can “control earthquakes, the weather — and even volcanoes.” It will have taken advantage of every inch of space, and build “cities on the oceans.”

For a civilization to attain Type I status, therefore, it needs to capture all of the solar energy that reaches the planet, and all the other forms of energy it produces as well, like thermal, hydro, wind, ocean, and so on.

More radically, Type I status would only truly be achieved once the entire planet is physically reconfigured to maximize its energy producing potential. For example, the entire mass of a planet could be reconstituted to take the form of a massive solar array to energize a civilization‘s power-hungry machinery.

Quite obviously, we are not a Type I civilization (at least not by this re-imagining of Kardashev’s original description). Not even close. But Kaku predicts that we’ll get there eventually, perhaps in a century or two.

But it could happen sooner if computational growth continues at its current breakneck pace (see Moravec, Kurzweil, and Bostrom). Hypothetically speaking, an artificial superintelligence (SAI) could get started in about three to four decades (either unilaterally, or by design).

  • Kardashev Type II

The next step is a big jump. And indeed, each increment of the Kardashev scale is an order of magnitude greater than the last.

Pre-dating Moore’s Law and Kurzweil’s Law of Accelerating Returns, Kardashev noticed that the rate of humanity’s energy consumption was increasing steadily. He wrote, “…the annual increase in this energy expenditure is placed at 3-4% over the next 60 years, on the basis of statistical findings.” Consequently, he predicted that, in about 3,200 years, “the energy consumption will be equal to the output of the Sun per second…i.e. 4 x 1033 erg/sec.”

This led him to speculate about a Type II civilization. For an ETI to reach K2, it would need to capture the entire energy output of its parent star.

The best way to achieve this, of course, is to build a Dyson Sphere.

Conjured by Freeman Dyson in 1959, this hypothetical megastructure would envelope a star at a distance of 1 AU and cover an inconceivably large area of 2.72 x 1017 km2, which is around 600 million times the surface area of the Earth. The sun has an energy output of around 4 x 1026 Watts, of which most would be available to do useful work.

It’s difficult to predict when we ourselves could become a Type II, but physicist Stuart Armstrong says we could start the project in a few decades. And once unde